
Technical Report 357/07

Mapping of formal Network

Quality-of-Service Requirements

Christian Webel
1

Reinhard Gotzhein
1

Daniel Schneider
2

1 Computer Science Department, University of Kaiserslautern
Erwin-Schrödinger-Str., D-67663, Kaiserslautern, Germany

{webel, gotzhein}@informatik.uni-kl.de

2 Fraunhofer Institute for Experimental Software Engineering
Fraunhofer-Platz 1, D-67663 Kaiserslautern, Germany

Daniel.Schneider@iese.fraunhofer.de

Contents

1 Introduction 4

2 Case Study Wireless Video Transmission 5

3 Formalization of Network Quality of Service 6

4 QoS Mappings along the Abstraction Levels 9

4.1 QoS Abstraction Levels . 9
4.2 QoS Domain Mapping . 11

4.2.1 QoS Performance Mapping . 12
4.2.2 QoS Reliabiliy Mapping . 13
4.2.3 QoS Guarantee Mapping . 14

4.3 Scalability Mapping . 14

5 Conclusion and Future Work 17

2

Abstract

The provision of network Quality-of-Service (network QoS) in wireless (ad-hoc) net-
works is a major challenge in the development of future communication systems. Before
designing and implementing these systems, the network QoS requirements are to be spec-
ified. Since QoS functionalities are integrated across layers and hence QoS specifications
exist on different system layers, a QoS mapping technique is needed to translate the spec-
ifications into each other. In this paper, we formalize the relationship between layers.
Based on a comprehensive and holistic formalization of network QoS requirements, we
define two kinds of QoS mappings. QoS domain mappings associate QoS domains of two
abstraction levels. QoS scalability mappings associate utility and cost functions of two
abstraction levels. We illustrate our approach by examples from the case study Wireless
Video Transmission.

1 Introduction

One of the major challenges in wireless (ad-hoc) networks is the provision of network
quality of service (network QoS), i.e. the quality of service provided by the underlying
communication system. The need for network QoS arises from the fact that, for state-
of-the-art distributed user applications, it is essential, to offer their functionality with a
certain degree of quality, which requires suitable communication mechanisms.

State-of-the-art wireless distributed communication systems must offer proactive and
intelligent behaviour in order to cope with varying channel quality and connectivity. In
other words, wireless communication systems must facilitate changes at runtime, and
these changes are to be performed according to an effective reasoning about user, envi-
ronment, and system context. The realization of such adaptive behaviour can in fact be
seen as one of the technological key challenges in the development of wireless communi-
cation systems supporting network quality of service.

One of the main drivers of adaptive behaviour is the need to maintain specific non-
functional properties, i.e. a specific level of QoS (Quality of Service) for the provided
services. Especially in the wireless domain, where resources (like bandwidth, energy,
processing power, and memory) are inherently scarce and subject to frequent change,
the systems need to manage their resources in a QoS-aware way. To this end, to form
a basis for corresponding adaptation mechanisms to work on, a major prerequisite is an
explicit specification of QoS offers and correlated needs. Moreover, QoS as an inherently
cross-cutting concern has to be considered from end-to-end and from user layer down to
the hardware layer. The QoS specifications hence reside on different layers of abstraction
and need to be mapped on each other.

In this paper, we we formalize the mapping of different QoS specifications into each
other, i.e. the relationship between layers. Based on a comprehensive and holistic for-
malization of network QoS requirements [3], we define two kinds of QoS mappings. QoS
domain mappings associate QoS domains of two abstraction levels. QoS scalability map-
pings associate utility and cost functions of two abstraction levels.

The remaining part of the paper is organized as follows: In Section 2, we present our
case study Wireless Video Transmission. Sections 3 sums up our previous work. Section
4 describes the different abstraction levels in communication systems supporting QoS
and the mappings between these levels. Last, Section 5 presents conclusions and future
work.

4

2 Case Study Wireless Video

Transmission

In the following sections, we will use our case study Wireless Video Transmission [2] for
illustration purposes. It consists of one video data source and one video projection facility,
interconnected via a wireless medium. There are three parameters to adjust the video
source: video resolution, JPEG compression in percent as a quality factor, and frame
rate. The need for adaptive QoS in a wireless environment arises from the heavy network
load caused by video transmission. While in wired networks, the available bandwidth
is usually sufficient, video transmission can absorb almost all available communication
resources in unstable wireless ad-hoc networks, depending on the chosen video frame rate,
image quality and resolution. Without a specification of the needed QoS and further
mechanisms operating on the specification, this resource consumption may lead to a
situation where the video transmission tends to congest the medium and thus prevents
all wireless communication.

5

3 Formalization of Network Quality of

Service

In previuos work [3], we have introduced a formalization and specification of network
quality of service. This formalization forms the basis for QoS mapping. In this Section
we briefly sum up the results from [3].

The need for formalization of network quality of service arises from the fact that a
precise description of network QoS between service user and service provider is needed
to police, control, and maintain the data flow a user emits to the communication system.
Further on, the mechanisms realizing these functionalities need a precise and well-defined
description of QoS. These mechanisms are typically integrated across layers, and there-
fore, more than one viewpoint on the required network QoS is needed. So another reason
for formalization is the support for a well-defined translation of the specification between
the different viewpoints on QoS, called QoS mapping. Formalization of network QoS is
done by firstly identifying the QoS domain, and secondly by describing the QoS Scala-
bility.

The QoS domain captures the QoS characteristics of a class of data flows, i.e. perfor-
mance, reliability, and guarantee:

Definition 1 (QoS Domain) The QoS domain Q is defined as Q = P ×R×G, where
P is the performance domain, R is the reliability domain, and G is the guarantee domain.
q = (p, r, g) denotes an element of Q, called QoS value.

QoS performance describes efficiency aspects characterizing the required amount of
resources and the timeliness of the service. Therefore, QoS parameters for the requested
and provided QoS have to be identified. The relevant aspects are included in the QoS
performance domain P , which we formalize as follows:

Definition 2 (QoS Performance) A QoS performance domain P is defined as P =
P1 × . . . × Pn =

∏n
i=1 Pi, where P1, . . . , Pn are performance subdomains.

QoS reliability describes the safety-of-operation aspects characterizing the fault be-
haviour (e.g., loss rate and distribution, corruption rate and distribution, error bursti-
ness). It can significantly impact the overall throughput and functionality on lower
system layers, since it requires redundancy (e.g., retransmission, forward error control).
The relevant aspects are included in the QoS reliability domain R:

6

Definition 3 (QoS Reliability) The QoS reliability domain R is defined as R = Loss×
Period × Burstiness × Corruption, with Loss = N0, Period = R+, Burstiness = R+,
and Corruption = {r ∈ R | 0 ≤ r < 100}.

QoS guarantee describes the degree of commitment characterizing the binding char-
acter of the service. Four degrees of commitment are distinguished: Best-effort, Deter-
ministic, Statistical, and Enhanced Best-Effort. QoS guarantee is formalized by the QoS
guarantee domain:

Definition 4 (QoS Guarantee) The domain of QoS guarantee G is defined as G =
DoC ×Stat×Prio, where Stat = {p ∈ R|0 < p ≤ 1}, Prio = N, and DoC = {bestEffort ,
enhancedBestEffort , statistical , deterministic}.

Varying communication resources require adaptive mechanisms to avoid network over-
load, and to scale the application service. The QoS scalability S describes the control
aspects characterizing the scope for a dynamic adaptation of the QoS aspects of a data
flow (described by a QoS domain) to a certain granted network quality of service:

Definition 5 (QoS Scalability) Let Q be a QoS domain. The domain of QoS scala-
bility S is defined as S = Util × Cost × Up × Down, where Util = {u | u : Q → [0, 1]},
Cost = {c | c : Q → R+}, and Up,Down ∈ {x ∈ R+ | 0 ≤ x ≤ 1}.

The elements of Util and Cost are called utility functions and cost functions, respec-
tively. A utility function determines the usefulness of QoS values, a cost function c
expresses the amount of needed resources, associating higher costs with scarcer resources.

QoS values with the same utility (∼u) are assigned to the same so-called u-equivalence
class of Q:

[x]u = {q ∈ Q | q ∼u x} (3.1)

A QoS requirements specification defines the set of valid QoS values and a QoS scala-
bility value:

Definition 6 (QoS Requirements Specification) Let Q be a QoS domain and S be
a QoS scalability domain. A QoS requirements specification qosReq is defined as a triple
(qmin , qopt , s), where qmin , qopt ∈ Q and s ∈ S.

The QoS values qmin and qopt specify a set Q
′

⊆ Q of valid QoS values. To obtain this
Q

′

, a preorder .u induced by the utility function is applied:

Q
′

= {q ∈ Q | qmin .u q .u qopt} (3.2)

We can stepwise reduce the QoS domain Q. Therefore, we define the reduced QoS
domain Qu by selecting the best element of each u-equivalence class of Q regarding c.
Let m be the cardinality of Q/∼u, the quotient set of Q w.r.t. ∼u, and let [x]iu denote
the ith element of Q/∼u regarding .u (ith u-equivalence class). Then,

Qu = {q1, . . . , qm} ∩ Q
′

, qi = q ∈ [x]iu | ∀y ∈ [x]iu . q .c y, 1 ≤ i ≤ m (3.3)

7

A further reduction induces a derived QoS domain Qu,c, discarding QoS values with
higher cost, but less utility:

Qu,c = {q ∈ Qu | ∀y ∈ Qu . c(q) > c(y) ⇒ u(q) > u(y)} (3.4)

8

4 QoS Mappings along the Abstraction

Levels

Before we elaborate on the concept of QoS mapping, we firstly present our QoS abstrac-
tion levels.

4.1 QoS Abstraction Levels

The various QoS mechanisms realizing the QoS specification operate on different system
layers, each with its own viewpoint describing the data flow traversing the (communica-
tion) system. We call these different viewpoints QoS Abstraction Levels and distinguish
between four of them:

• User: From the user point of view, the needed QoS is usually described in terms
of application scenarios. The reason for this is that a user is normally not inter-
ested in the concrete details and parameters of a QoS communication, but on the
consequences for him.

• Application: On application level, the quality of service is specified in terms of
application parameters describing the user data flow. The user quality of service
is translated into more concrete parameters. For example, a video transmission
is described by a video frame rate, resolution or image quality. This is done in a
hardware and platform independent way.

• Communication: The underlying transport system, the communication network,
provides a further viewpoint on quality of service. On this abstraction level,
transmission units, transmission periods, packet delay or packet jitter describe the
needed network QoS to fulfill the QoS requirements in an application and hardware
independent, but platform specific manner.

• Resource: Finally, for a QoS communication to be realized on a specific platform
and base technology, the parameters of the communication abstraction layer have
to be refined to support concrete resources such as bandwidth, energy, cpu cycles
or memory.

On each abstraction level, a QoS requirements specification describes the needed and
granted QoS in a formal manner. A QoS mapping translates the different specifications
into each other.

9

user data flow

communication

application

user

concrete resources

transmission units

higher layer data units of variable size

lower layer data units of fixed size

bandwidth, memory, energy, ...

middleware layer

application layer

resources hardware layer

Corresponding System Layer

application scenarios

Levels of Abstraction

Figure 4.1: Different levels of abstraction and corresponding system layers

In Figure 4.1 abstraction levels are associated with corresponding system layers. The
user point of view is not mapped to a specific system layer, as it is not part of the system.

In the application layer, most of the medium- and long-term QoS functionalities can
be found. Here, the user data flow is application dependently processed or manipulated.
The units on this layer are typically higher layer protocol data units (PDUs) of vari-
able size. The application layer is usually tailored to one or more applications. Within
this layer, there is no knowledge of the underlying communication system. Thus, the
QoS specification on this layer is application-specific but communication system- and
hardware-independent and the level of abstraction corresponds to the application ab-
straction level.

The communication abstraction level corresponds to the middleware layer. Here, the
transport units are lower layer PDUs of a (fixed) maximum size. Different user data flows
are multiplexed together to form only one data flow to be transmitted via the network.
On this layer, short-term QoS functionalities control and manipulate the network data,
e.g. traffic shaping and packet scheduling. An exact knowledge of the platform, i.e. the
operating system and the base technology, or the current network state, e.g. topology or
channel conditions, is not required. So the QoS specification on the middleware layer is
platform- and application-independent.

The most fine-grained level of abstraction, the resource point of view, is mapped to the
hardware layer. The specification of QoS is directly translated into concrete resources
such as bandwidth, energy, memory and so on. Typical QoS functionalities are medium

10

middleware layer

︷ ︸︸ ︷

scenario = (qmin , qopt , s)

application scenario
informal description of the

user

application layer

hardware layer

QoS mapping

QoS mapping

feedbacku(q
cur)

Q
′

resource

framesopt

Q
′

middleware

framesmin

e.g. bandwidth, delay, ...

e.g. fps, quality, ...

e.g. #frames/sec, ...

Q
′

application

bandwidthmin
bandwidthopt

qopt

qcur
qmin

Figure 4.2: Mapping of two QoS requirements specifications

access and resource reservation. For this reason, the QoS specification on this layer is
highly hardware dependent. Usually it is not possible to directly specify the needed
QoS on this system layer with an appropriate level of detail, since too many factors and
interrelationships between the hardware parameters have to be considered. For instance
it is not possible to manually specify the needed energy for a given operation, since it
depends on the cpu cycles, the memory allocation or a resulting transmission of data.

4.2 QoS Domain Mapping

To relate QoS requirements of different abstraction levels, QoS mappings are needed. In
this section, we introduce QoS domain mappings between a higher layer QoS domain Qh

and a lower layer domain Ql.

This is illustrated in Figure 4.2. A service user describes the application scenario in
an informal way, e.g. surveillance or panorama. Based on this informal description,
a detailed QoS requirements description on application layer has to be derived. This
cannot be done automatically, since it is not possible to automatically generate a concrete
specification out of an informal description. So the first mapping between user and
application layer is explicitly given by the tight coupling between these two layers. Based
on this first requirements specification, a subset Q

′

application (cf. (3.2)) is formed on
application layer. The different communication layers use different parameters to describe
the user data flow and hence the available network QoS. On application layers, e.g. a
video data flow is described in terms of video frames per second and a quality factor.

11

This description has to be translated to a corresponding specification on middleware layer,
where the parameters are e.g. frames per second. The reason for that is, that mechanisms
on this layer like segmentation and composite or error detection and correction operate
on a user data independent representation of the data flow. Finally, the specification
on middleware layer has to be mapped to a specification on hardware layer, taking into
account concrete resources like bandwidth, delay, or even energy consumption. The QoS
mapping is obviously nontrivial. The user feedback of the currently granted QoS is given
via the utility function.

Definition 7 (QoS Domain Mapping) Let Qh, Ql be QoS domains on different sys-
tem layers. A QoS domain mapping dm : Qh → Ql is a function from a (higher layer)
QoS domain Qh to a (lower layer) QoS domain Ql. The domain mapping dm may be
defined using auxiliary functions as follows:

dmP : Qh → Pl (performance mapping)

dmR : Qh → Rl (reliability mapping)

dmG : Qh → Gl (guarantee mapping)

In general, the QoS mappings are neither injective nor surjective. That means, that two
different QoS values q1, q2 ∈ Qh could be mapped to the same ql ∈ Ql and that the values
of m do not span the whole codomain Ql Figure 4.3 illustrates the problem. Given four
elements of a reduced QoS domain Q

′

and an utility functions u describing an order on
Q

′

. The first QoS mapping dm1 is injective, i.e. the mapping function is order-preserving
under a new order ≤n with ∀ q1, q2 ∈ Ql : q1 ≤n q2 ⇔ u(dm−1

1 (q1)) ≤u u(dm−1
1 (q2)). But

often, more than one higher layer tuple is mapped to the same lower layer tuple (dm2).
In this case, the mapping function is non order-preserving under u, since, on the one
hand, no inverse mapping function dm−1

2 exists, and, on the other hand, (1, 3) cannot be
simply compared to (3, 3). Also there exists tupels (x, y) with dm(q

′

) 6= (x, y). For these
reasons, the mapping of the scalability requirements specification, especially the utility
function, is nontrivial.

In the following, we elaborate on the three subfunctions in detail.

4.2.1 QoS Performance Mapping

The QoS performance mapping dmP translates the performance parameters into each
other. The performance parameters are system layer and hardware dependent, i.e. pa-
rameters like the maximum transfer unit (MTU), the path MTU, or the frame format
have to be considered.

Definition 8 (QoS Performance Mapping) Let Ph, Pl be performance domains on
different system layers. A QoS performance mapping dmP : Ph → Pl is a function
translating performance values ph ∈ Ph into new values pl ∈ Pl = Pl1 × · · · × Pln . To
define dmP , auxiliary functions dmPi

(ph) = pli , ∀ i ≤ ln can be used.

12

m1 = (a, b + c)

(1, 1, 2) ≤u (1, 3, 2) ≤u (2, 3, 1) ≤u (3, 1, 0)


ydm1



ydm1



ydm1



ydm1

(1, 3) ≤n (1, 5) ≤n (2, 4) ≤n (3, 1)

m2 = (b, a + c))

(1, 1, 2) ≤u (1, 3, 2) ≤u (2, 3, 1) ≤u (3, 1, 0)


ydm2



ydm2



ydm2



ydm2

(1, 3) ≤n (3, 3) ≤n (3, 3) ≤n (1, 3)

Figure 4.3: Example of an order-preserving (m1) and a non order-preserving mapping
function (m2)

Referring to our case study, a performance mapping from the application layer per-
formance parameters Pvideo to the underlying middleware layer with Pmw = #Frames ×
Period is done in the following way:

dmP : Pvideo → Pmw

dmP ((resx, resy), fps, quality) = (#frames, period), with

dmP1
((resx, resy), fps, quality) = #frames =

⌈
(160·quality+3000)·(resx−160)/160

user bytes per frame

⌉

dmP2
((resx, resy), fps, quality) = period = 1

fps

The middleware protocol data unit frame contains a maximum amount of 1420 user bytes.
Given quality and resolution, the number of transmission frames per picture frame can
be determined. Period specifies a deadline interval of the periodic transmission task.

4.2.2 QoS Reliabiliy Mapping

Higher layer transmission units (e.g., picture frames) can be larger than lower layer
units and therefore have to be fragmented and reassembled. This, however, complicates
the definition of the QoS reliability mapping (see [1]). To illustrate this, consider the
example in Fig. 4.4. On application layer, the variable-size picture frames are fragmented
into maximum-size middleware packets. On middleware layer, we assume a loss ratio of
30%. The loss can be caused by packet loss, corrupted, dropped, or late-delivered PDUs.
Further, we assume that a loss of even one lower layer packet results in the loss of the
entire picture frame. In Figure 4.4.a, the loss ratio results in a picture frame loss of 33%.
If the loss is uniformly distributed (as shown in Fig. 4.4.b), the same ratio leads to a loss
on application layer of 100%.

13

(a) loss burst

(b) uniformly distributed loss

app. layer

mw. layer

app. layer

mw. layer

resulting loss (app)lost pdu (mw)

Figure 4.4: Upper layer PDUs vs. lower layer PDUs

Notice that a simple description of the lower layer loss or corruption probability is
not sufficient for deriving the expected upper layer reliability parameters. Moreover,
uniformly distributed losses may be more adverse than bursty losses. To define the QoS
reliability mapping, a segmentation model of the user data is needed. In our case study,
this model would introduce probability distributions of picture frame sizes and resulting
probability mass functions of the number of needed middleware packets. Further, an
error model characterizing the loss and/or corruption process is needed. This error
model strongly depends on the chosen base technology. The definition of segmentation
and error model are out of the scope of this paper. A treatment of these aspects can be
found in [1].

4.2.3 QoS Guarantee Mapping

The function dmG maps the guarantees specified on one system layer to corresponding
guarantees on another. Ideally the guarantees should stay the same during a mapping
process. But in exceptional cases, e.g., if the underlying base technology does not support
required degree of commitment, an upgrade is permitted. For example, a mapping from
statistical to deterministic guarantees is always feasible, whereas a mapping vice versa
could result in a violation of the traffic contract.

4.3 Scalability Mapping

QoS scalability describes the control aspects characterizing the scope for dynamic adap-
tation of QoS parameters. To apply scaling on different levels of abstraction, a QoS
scalability mapping is needed. For consistency, this mapping has to ensure that the
utility of QoS values of different abstraction levels that are related by the QoS domain
mapping dm is the same. To enforce this consistency condition, we will now define a
scalability mapping such that, given a utility function uh, yields the corresponding util-
ity function ul. Next, we will introduce a cost function that associates costs with QoS

14

higher layer: Sh = Utilh × Costh × Uph × Downh



ysmUtil

x

smCost



ysmUp



ysmDown

lower layer: Sl = Util l × Cost l × Upl × Down l

Figure 4.5: Scalability mapping

values. Based on this cost function, we will finally arrive at a reduced set of QoS values
characterizing the actual scope for dynamic adaptation.

In the following definition, let Q∗

l = {ql ∈ Ql | ∃ qh ∈ Qh . dm(qh) = ql} denote the
set of mapped QoS values, and let [qh]dm = {x ∈ Qh | x ∼dm qh}, ∼dm= {(qh, q

′

h) ∈
Qh ×Qh |dm(qh) = dm(q

′

h)}, denote the equivalence classes containing those QoS values
qh that are mapped to the same ql.

Definition 9 (QoS Scalability Mapping) Let Sh, Sl be scalability domains on differ-
ent system layers. A QoS scalability mapping is a set of four mapping functions smUtil ,
smCost , smUp and smDown , translating the different scalability domains into each other
(see Fig. 4.5):

smUtil : Utilh → Util l; ∀uh ∈ Utilh . ∀ql ∈ Q∗

l . ul(ql) =DF uh(qh) |

qh ∈ Qh ∧ dm(qh) = ql ∧ ∀x ∈ [qh]dm . uh(qh) ≥ uh(x)

smCost : Cost l → Costh; ∀cl ∈ Cost l .∀qh ∈ Qh . ch(qh) =DF cl(dm(qh))

smUp : Downh → Upl;∀x ∈ Uph . smUp(x) =DF x

smDown : Downh → Down l;∀x ∈ Downh . smDown(x) =DF x

Some explanations are in order. Let qh, q
′

h ∈ Qh, uh(qh) > uh(q
′

h), dm(qh) = dm(q
′

h).
In other words, although the utility of qh is higher than that of q

′

h, they consume the
same amount of resources ql = dm(qh). In this case, the utility of ql is chosen as
ul(ql) =DF uh(qh), i.e. the better value. This means, that when the resources ql are
available, they are exploited as best as possible. This idea is generalized in the definition
of the mapping function smUtil, where to each value of ql ∈ Q∗

l , the maximum utility
of all corresponding values qh ∈ Qh is assigned. Note that costs are mapped from lower
to higher system layer and that the thresholds for upscaling and downscaling remain
unmodified by the QoS scalability mapping.

With the QoS mappings dm, sm and the reduced QoS domain (see (3.4)), it is possible
to define a scaling function to be used in system design and implementation. The scaling
function scalu,cl

: Ql → Qu,ch ∪ {0} forms the main part of our scalability model and
therefore maps a lower layer QoS values describing the currently granted network QoS
to a higher layer cost-optimal QoS value. The function selects the best possible, i.e. the
optimum QoS value q ∈ Qu,ch regarding the utility function u in compliance with the

15

currently granted QoS resources qgranted ∈ Ql, if such an element exists, otherwise 0. For
this reason, the cost function cl has to be mapped to a corresponding higher layer cost
function ch in order to properly reduce Q. The scaling function is defined as follows:

scalu,cl
(qgranted) = maxu{q ∈ Qu,smCost (cl) | cl(dm(q)) ≤ cl(qgranted)} (4.1)

whereas the maximum operator max f for a given set X defines x as an f -maximal element
of X iff x ∈ X and ∀y ∈ X : (f(x) ≤ f(y) ⇒ x = y), short maxf{X}. The maximum of
an empty set is defined as zero, i.e. maxf∅ = 0.

16

5 Conclusion and Future Work

In this paper, we have presented two kinds of QoS mappings, called QoS domain mappings
and QoS scalability mappings. These mappings are based on an holistic, comprehensive
formalization of network QoS requirements. The QoS domain mapping relates QoS do-
mains on different system layers using three auxiliary functions, a performance mapping,
a reliability mapping, and a guarantee mapping. The Qos scalability mapping translates
QoS scalability domains into each other, across layers.

All mappings so far are based on mathematics, since the formalization of network
QoS requirements is based on it. For better usability, we intend to define a formal QoS
requirement specification language, with intuitive keywords and structuring capabilities.
This language should be powerful enough to host the concepts and criteria we have
introduced in this paper and in por prvious work. Also, the language should be supported
by tools that can, for instance, construct QoS mappings as far as they have been defined
in this work.

17

Acknowledgment

The work presented in this paper was (partially) carried out in the BelAmI (Bilateral
German-Hungarian Research Collaboration on Ambient Intelligence Systems) project,
funded by German Federal Ministry of Education and Research (BMBF), Fraunhofer-
Gesellschaft and the Ministry for Science, Education, Research and Culture (MWWFK)
of Rheinland-Pfalz.

18

Bibliography

[1] L. A. DaSilva. QoS Mapping Along the Protocol Stack: Discussion and Prelimi-
nary Results. In Proceedings of IEEE International Conference on Communications
(ICC’00), volume 2, pages 713–717, New Orleans, LA, June 18-22, 2000.

[2] C. Webel, I. Fliege, A. Geraldy, R. Gotzhein, M. Krämer, and T. Kuhn. Cross-
Layer Integration in Ad-Hoc Networks with Enhanced Best-Effort Quality-of-Service
Guarantees. In Proceedings of World Telecommunications Congress (WTC 2006),
Budapest, Hungary, 2006.

[3] C. Webel, R. Gotzhein, and D. Schneider. Formalization of quality-of-service require-
ments for wireless networks. Technical Report 356/07, University of Kaiserslautern,
Kaiserslautern, Germany, 2007.

19

