NQSL - A Specification Language for Network
Quality of Service

— Technical Report 368/07 —

Christian Webel

Computer Science Department, University of Kaiserslautern, Kaiserslautern,
Germany, webel@informatik.uni-kl.de

Abstract. The provision of Network Quality-of-Service (QoS) is a ma-
jor challenge in the design of future communication systems. Before de-
signing and implementing communication systems, the network QoS re-
quirements have to be specified. In this paper, we present a formal de-
scription technique for network QoS called NQSL, which is based on a
formalization of network QoS requirements, including QoS mappings for
cross-layer design and scalability. QoS requirements are specified on each
layer by defining QoS domain, consisting of QoS performance, reliability,
and guarantee, and QoS scalability, with utility and cost functions.

1 Introduction

One of the major challenges in wireless (ad-hoc) networks is the provision of
network Quality-of-Service (network QoS), i.e. the quality of a service provided
by the underlying communication system. The need for network QoS arises from
the fact that, for state-of-the-art distributed user applications, it is essential, to
offer their functionality with a certain degree of quality, which requires suitable
communication mechanisms. State-of-the-art wireless distributed communica-
tion systems must offer proactive and intelligent behaviour in order to cope with
varying channel quality and connectivity. In other words, wireless communica-
tion systems must facilitate changes at runtime, and these changes are to be
performed according to an effective reasoning about user, environment, and sys-
tem context. The realization of such adaptive behaviour can in fact be seen as
one of the technological key challenges in the development of wireless communi-
cation systems supporting network Quality-of-Service.

One of the main drivers of adaptive behaviour is the need to maintain specific
non-functional properties, i.e. a specific level of QoS for the provided services.
Especially in the wireless domain, where resources (like bandwidth, energy, pro-
cessing power, and memory) are inherently scarce and subject to frequent change,
the systems need to manage their resources in a QoS-aware way. To this end, to

form a basis for corresponding adaptation mechanisms to work on, a major pre-
requisite is an explicit specification of QoS offers and correlated needs. Moreover,
QoS as an inherently cross-cutting concern has to be considered from end-to-end
and from user layer down to the hardware layer. The QoS requirement specifi-
cations hence reside on different layers of abstraction and need to be mapped on
each other.

In previous work [1], we have introduced a formalization of network QoS.
In particular, we have formalized the notions of QoS domain, QoS scalability,
QoS mapping, and QoS specification to reach the aforementioned goals. In this
paper, we build on and extend these results by providing a formal description
technique called NQSL, the Network QoS Specification Language, to intuitivly
specify the requirements on network QoS.

The remaining part of this paper is organized as follows: In Section 2, we
summarize our formalization and specification of network QoS requirements from
a previous paper. Section 3 introduces NQSL, the Network QoS Specification
Language. Conclusions are drawn in Section 4.

2 Formalization of Network Quality-of-Service

In previous work [1], we have introduced a formalization, specification and formal
mappings of network quality of service. In this section we briefly sum up the
achieved results.

2.1 Formalization and Specification of Network Quality-of-Service

The need for formalization of network quality of service arises from the fact that
a precise description of network QoS between service user and service provider is
needed to police, control, and maintain the data flow a user emits to the commu-
nication system. Further on, the mechanisms realizing these functionalities need
a precise and well-defined description of QoS. Formalization of network QoS is
done by firstly identifying the QoS domain, and secondly by describing the QoS
Scalability.

The QoS domain @ captures the QoS characteristics of a class of data
flows, i.e. performance, reliability, and guarantee and is therefore defined as
@ = P x R x GG, where P is the performance domain, R is the reliability do-
main, and G is the guarantee domain. An element g = (p,r,g) of Q is called
QoS value. QoS performance describes efficiency aspects characterizing the re-
quired amount of resources and the timeliness of the service. The therefore iden-
tified QoS parameters are included in the QoS performance domain P with
P=Px...xP, = H?:l P;, where Py, ..., P, are performance subdomains. The
QoS reliability describes the safety-of-operation aspects characterizing the fault
behaviour (e.g., loss rate and distribution, corruption rate and distribution, error

burstiness) and is defined as R = Loss x Period X Burstiness x Corruption, with
Loss = Ny, Period = Ry, Burstiness = Ry, and Corruption = {r e R|0<r <
100}. The QoS guarantee describes the degree of commitment characterizing the
binding character of the service. Four degrees of commitment are distinguished:
Best-effort, Deterministic, Statistical, and Enhanced Best-Effort. QoS guaran-
tee is formalized by the QoS guarantee domain as G = DoC x Stat X Prio,
where Stat = {p € R|0 < p < 1}, Prio = N, and DoC = {bestEffort,
enhancedBestEffort, statistical, deterministic}.

Varying communication resources require adaptive mechanisms to avoid net-
work overload, and to scale the application service. The QoS scalability S de-
scribes the control aspects characterizing the scope for a dynamic adaptation
of the QoS aspects of a data flow (described by a QoS domain) to a certain
granted network quality of service. The domain of QoS scalability S is de-
fined as S = Util x Cost x Up x Down, where Util = {u|u : Q — [0,1]},
Cost ={c|c:Q — Ry}, and Up, Down € {z € R4 |0 < x < 1}. The elements
of Util and Cost are called utility functions and cost functions, respectively. A
utility function determines the usefulness of QoS values, a cost function ¢ ex-
presses the amount of needed resources, associating higher costs with scarcer
resources. QoS values with the same utility (cost) (~() are assigned to the
same so-called u(c)-equivalence class of Q: [x],) = {q € Q[q~uw x}

A QoS requirements specification qosReq defines the set of valid QoS val-
ues and a QoS scalability value and is defined as a triple (Gmin, ¢opt, $), Where
Gmin, Qopt € @ and s € S. The QoS values g,i, and gop¢ specify a set Ql cqQ
of valid QoS values. To obtain this @', a preorder <. induced by the utility
function is applied: Q" = {¢ € Q | gmin Su ¢ <u Qopt }-

We can stepwise reduce the QoS domain (). Therefore, we define the reduced
QoS domain Q" by selecting the best element of each u-equivalence class of @
regarding c¢. Let m be the cardinality of ()/~,,, the quotient set of @ w.r.t. ~,, and
let [z]!, denote the ith element of Q/~, regarding <, (ith u-equivalence class).
Then, Q“ ={q1,....qu} NQ, g =q€a),|Vyea),. ¢Scy, 1<i<m.
A further reduction induces a derived QoS domain Q"€ discarding QoS values
with higher cost, but less utility, Q"¢ = {q € Q"|Vy € Q".c(q) > c(y) = u(q) >

u(y)}-

2.2 Formal Mappings of Network Quality of Service

The mechanisms realizing QoS management tasks are typically embedded in the
communications system, prevalent across layers, hiding complex tasks from the
application. This leads to simple QoS specifications on higher system layers,
whereas on lower system layers, the complexity increases. To rigorously relate
the different viewpoints on network QoS, a well-defined translation of the spec-
ification is needed, called QoS mapping. The QoS mapping can be divided into

the QoS domain and the QoS scalability mapping.

The QoS domain mapping dm : Qn — Q; is a function from a (higher layer)
QoS domain @, to a (lower layer) QoS domain @;. The domain mapping dm may
be defined using the auxiliary functions dmp : Q, — P, (performance mapping),
dmp : Qp — Ry (reliability mapping) and dmg : Qr — G; (guarantee mapping).
A detailed description of the three mapping subfunctions is given in [1]. In gen-
eral, the QoS mappings are neither injective nor surjective. That means, that
two different QoS values ¢1,q2 € @), could be mapped to the same ¢; € Q; and
that the values of dm do not span the whole codomain ;. For these reasons,
the mapping of the scalability requirements specification, especially the utility
function, is nontrivial.

The QoS scalability mapping is needed to apply control aspects characterizing
the dynamic adaptation of QoS parameters on different system levels. A QoS
scalability mapping sm is a set of four mapping functions sm g4, smcost, sSmup
and smpown, translating the different scalability domains into each other. Due
to limitations of space, we also omit a detailed description of the four functions.
For a closer look, we refer to [1].

2.3 Meta-Model

In [2] we have introduced a first metamodel for network Quality-of-Service. Based
on this metamodel, we derived a new one, which is also based on the formaliza-
tion of network QoS surveyed in Section 2. The metamodel as shown in Figure 1
introduces a new class NetworkQoSDescription, that encapsulates QoS require-
ments specifications and QoS mappings. Additionally, QoS domains and QoS
subdomains are aggregated in this class. This facilitates reuse since one sub-
domain can be used in several QoS domains, which is modeled by references.
Moreover, the QoS specification is subdivided into a class QoSSpecification and
QoSProfile to enable various application scenarios, i.e. use cases where the QoS
domains are indistinguishable but the minimum and optimum QoS values resp.
the description of the scalability are different. The relation between QoS spec-
ification and QoS domain is explicitly modeled. To simplify the implemtation,
the domains of performance, reliability and guarantee are subsumed under a
superclass Domain. Further, the belonging of the Concrete Values to the one of
the three domains is modelled as aggregations between QoSValue and Concrete-
Value instead of introducing further subclasses. So the condition that a QoS
value of a QoS domain contains only one concrete value is not visible in this
metamodel. The QoSScalabiliy is exactly modelled as described in the formal-
ization. The scalability consists of a UtilityFunctions and a CostFunction and
two thesholds up and down. The three mappings for performance, reliability and
guarantee are summed up in a new class MappingFunction. For every subdomain
of the target domain, the DomainMapping contains one mapping function. The
scalability mapping must not be explicitly modeled, as it is identical for all QoS
requirement specifications.

E NetworkQoSDescription

*
0..% 1.* source 0-
QoSSpecification oSDomain oSMappin
=] P belongs_to 1..1 Ha 1.1 50 pRing
= name = name = name
0.% 1.1
: target
E Subdomain 1.1
1* = name [l PerformanceDomain
. = type
5 QoSProfile: = domain
= name = unit
1.1
11 0..* H ReliabilityDomain
- 1.1 1.1
[l QoSScalability | . opt
= up
= down 1.1 11 Lt
. 1.1 E GuaranteeDomain | 5 QoSDomainMapping
E QoSvalue
1.1
e - uses
[UtilityFunction performanceMapping
= desc performance i reliabilityMapping
reliability [Domain guaranteeMapping
guarantee
1.1 0..%0..% 0. 0.*0.%/0.*
E CostFunction E ConcreteValue E MappingFunction
= desc = value = description
is_from maps_to

Fig. 1. Domain Model for the Graphical NQSL Editor

3 Network Quality-of-Service Specification Language

This section defines the formal Network Quality-of-Service Specification Lan-
guage (NQSL), a lexikal language for specifying the requirements on network
Quality-of-Service. NQSL is a grammatical description of the formalization of
network QoS and therefore powerful enough to host the concepts and criterias
introduced in Section 2. It is a declarative language with a formal semantic since
it is based on a mathematical model with functions (e.g. domain mapping dm)
and operators (e.g. ~,).

In the following, we confine our presentation of the language definition to
some excerpts. The complete definition of the language can be found in Ap-
pendix A. The syntactical notation of the presented language is given according
to the Extended BNF (EBNF). The basics are briefly recalled to avoid ambigu-
ities:

— non-terminals are written in angle-brackets <non-terminal>, terminals are
enclosed by single quotes ’terminal’

— productions are declared by <non-terminal> = expansion;

— sqare brackets enclose optional parts [optionall

— alternatives are separated by |

As described in Section 2.1, a QoS domain captures the QoS characteristics of
a class of data flows, i.e. performance, reliability, and guarantee. A QoS domain

has a name to refer to and a domain body divided into declarations of perfor-
mance, reliability and guarantee domains. These three declarations again are
ordered sets of so called subdomains. The language definition for a QoS domain

is:
<qosdomain_item>
<domain _body>

<partdomain _list>

<partdomain item>

’QoSDomain’ <ident > <domain_body >;
’{’ <partdomain list> ’}7;

<partdomain_list> <partdomain_item>
<partdomain_item >;

<pdomain_item>
<rdomain item>
<gdomain _item >;

<pdomain_item> = ’Performance’ <partdomain_ body >;
<rdomain_item> = ’Reliability ’ <partdomain body >;
<gdomain item> = ’Guarantee’ <partdomain body >;
<partdomain_body> = ’{’ <subdomain list> ’}’;
<subdomain_list> = <subdomain_list> <subdomain item>

<subdomain item >;

As an example, the declaration of the QoS domain Video is given by

QoSDomain Video{

Performance{
}
Reliability {

Guarantee{

}

The main building block of every QoS domain specification is the QoS subdo-
main. Subdomains are essential when defining multi-dimensional QoS domains.
A QoS subdomain is identified by a unique name and specifies a type based on
one or more basic data types (integer, real, or enum) or prior defined subdo-
mains. Optionally, a definition of the domain of the type can be given to restrict
to a set of possible values. The declaration of a QoS subdomain follows the next

pattern:

<subdomain _item> =
<subdomain body> =
<subdomain desc> =

<type_desc> =

<name_item>
<type_item>
<domainOfType item>

’SubDomain’ <subdomain_body>
’SubDomain’ <ident> ’;’;

"{’ subdomain desc:sdd '}’
{> /* EMPTY x/ ’}7;

<name_item> <type desc>

<type_ desc> <name_item>;

<type_item>
<type_item> <domainOfType item>
<domainOfType item> <type item >;

‘name’ ’:’ <ident> ;7
‘type’ 7:’ <datatype> ’;’;
’domain ’:’ <domainOfType> ’;’;

As an example consider following QoS subdomain declaration:

Subdomain {
name: Resolution;
type: (Integer ,Integer);

Here we have defined a subdomain of type Resolution. The possible values of
this subdomain are pairs of Integers. By default, values of the Integer domain
are not restricted, so every possible combination of integers is allowed.

To further restrict the possible values of a subdomain, a declaration of the
domain can be given:

<domainOfType item> = ’domain ’:’ <domainOfType> ’;’;

<domainOfType> = <setofvalues>
| <listofvalues >;

<setofvalues > = ’{’ <intervalvalue list> '}’
| 7{’ <enum list> ’}’;

<listofvalues > = <intervalvalue list>
| <enum list >;
<intervalvalue list> = <intervalvalue list> ’,’ <intervalvalue item>

| <intervalvalue item >;

<intervalvalue item> = <interval>
| <value >;
<enum _list> = <enum _list> ’,’ <ident>
| <ident >;

A domain can be set of possible values or intervals. An interval is specified by a
lower and upper boundary. The interval can include ([.. resp. ..]) or exclude
the boundary (] .. resp. ..[). If no boundary is given, infinity is assumed.

An example is given below. To further restrict the possible values of the
subdomain Resolution the domain is given allowing only three pairs of integer
values:

subdomain {
name: Resolution;
type: (Integer ,Integer);
domain: {(320,240),(480,360),(640,480)};

If the type of a subdomain is enum, the declaration of the domain type is
mandatory. In this case, the domain is a set of user-defined identifiers. Normally,
the elements of an enum are ordered by a nominal scale (e.g. from 1 to 10).
However, we assume that the first element declared has the lowest value.

<enum _list> = <enum _list> ’,’ <ident>
| <ident >;

For instance, an enumaration can be used to declare a subdomain describing
the (available) degree of commitment:

Subdomain {
name: DoC;
type: enum;
domain: {bestEffort , enhancedBestEffort,statistical ,deterministic };

}
Hence, the performance domain of the QoS domain Video can be declared
as:
Performance{
Subdomain {
name: Resolution;

type: (Integer ,Integer);
domain: {(320,240),(480,360),(640,480)};
}

Subdomain {
name: Quality ;
type: Integer;
domain: {25,50,75};
}

Subdomain {
name: FrameRate;
type: Integer;
domain: [1,25];

}

To relate QoS requirements of different QoS domains, QoS domain mappings
are needed. A QoS mapping initiated by the keyword domainMapping has a
source domain from and a target domain to. Within a domain mapping, there
are several mapping functions, translating higher layer QoS subdomains to lower
layer subdomains or vice versa. If no mapping should be done, i.e. the subdo-
mains are identical and the concrete values should stay the same, the mapping
function can be left empty. In the following, the language definiton for QoS
domain mappings is presented:

<mapping part> = ’domainMapping’ ’from’ <ident> ’to’ <ident> <mapping body >;
<mapping _body> = ’{’ <mapping list> ’}’;
<mapping list> = <mapping list> <mapping item>

<mapping_item> ;

<mapping_item> = ’Performance’ ’:’ <mappingfunc_list>
| "Reliability > ’:’ <mappingfunc_ list>
|

’Guarantee’ ’:7 <mappingfunc list >;

<mappingfunc_list> = <mappingfunc_list> <mappingfunc_part>
| <mappingfunc part >;

<mappingfunc part> = <mappingfunc> ’;’;

<mappingfunc> <ident> ’=’ <expression>

| <ident>
| /#*no mappingx*/;

As an example consider the following mapping from the QoS domain Video
to a QoS domain Middleware. The performance parameters are mapped to corre-
sponding parameters Frames and Period, describing the number of middleware
data frames of size 1420 Byte with an intervall Period seconds.

domainMapping from Video to Middleware{

Performance:
Frames=(160x Quality +3000)*(Resolution.1.—-160)/(160%1420);
Period=1/FrameRate;

Reliability: (...)
Guarantee: (...)

The QoS requirements specification decribes the needs of a sevice user (ap-
plication) on a communciation system. It is described by an unique name and
is of a specific QoS domain, described by the keyword uses. The specification
consists of several QoS requirement profiles, called qosReq. The QoS requirement
profiles are described by minimum and optimum QoS values and a description of
the scalability. The grammar of a QoS requirement specification is given below:

5

<specification_part> = Specification <ident> ’uses
<ident > <specification _body >;

<specification body> = "{’ <qosreq_list> ’}’;

<qosreq_ list> = <qosreq_list > <qosreq_item>
| <qosreq item >;

<qosreq _item> = ’qosReq’ <ident> <qosreq body >;
<qosreq_body> = ’{’ <qosreq_part> ’}’;
<qosreq_ part> = <minopt_list> <scalability spec>

| <minopt list >;

<minopt _list> = ’'minimum’ <subspec_part> ’optimum’ <subspec_part>
| ’optimum’ <subspec part> ’'minimum’ <subspec part >;

<subspec part> = "{’ <subspec list> ’'}7;

<subspec _list > <subspec_list > <subspec_item>

| <subspec item> ;
<subspec item> ’Performance’ ’:’ <assignment list>
"Reliability > ’:’ <assignment _list>
’Guarantee’ ;7 <assignment _list >;

<scalability spec> = ’Scalability ’ <scalability body >;

In the following example, the QoS specification VideoTelephony consists of
one QoS profile surveillance, described by a minimum and optimum QoS value,
as well as a description of the scalability.

Specification VideoTelephony uses Video {
qosReq surveillance {
minimum{ ()}
optimum { (...) }

Scalability{ (...) }

The specification of a QoS value in detail is done by assigning concrete values
to every subdomain of performance, reliability and guarantee. The scalability is
described by an wutility and cost functions and two thresholds up and down.

<subspec_part>

<subspec list >

<subspec_item>

<assignment _list>

<assignment part>

<assignment >

<scalability spec>
<scalability body>

<scalability list>

<scalability part>

<scalability item >

{’ <subspec_list> '}’

<subspec list> <su
<subspec item> ;

’Performance’ 7:’
>Reliability ’ 7:’
’Guarantee’ T

<assignment _list>
<assignment _part >;

<assignment> ’;’;

<value
<ident

<ident> ’=’
<ident> ’=’

’Scalability ’ <sca

{’ <scalability 1

bspec_item>

<assignment _list>
<assignment _list>
<assignment list >;

<assignment _part>

>
>3

lability body >;

ist> "},

<scalability list > <scalability part>
<scalability part >;

<scalability item> ’;

util’ '=’ <expre
‘cost’ ’=’ <expre
‘up’ =’ <simpl
>down’ =’ <simpl

v
s

ssion >
ssion >
evalue >
evalue >;

An example is given below. A requirements specification of the prior defined
performance domain is given by assigning concrete values to the Resolution sub-
domain, the Quality subdomain, the FrameRate subdomain and the domain of
the scalability. Therefore, the utility and cost functions have to be described by
means of prior defined subdomains.

Performance:

Resolution = (640,480);
Quality = 75;
20;

FrameRate
(.0
Scalability {
util =
cost =
up = 0.2;
down = 0.1;
}

0.3%(Resolution.1—-160)/480 + 0.3x%
Periodx\#Frames*1420;

4 Conclusion and Future Work

Quality /75 + 0.3%FrameRate /25;

In this paper, we have presented NQSL, the Network QoS Specification Lan-
guage, to formally specify network QoS. NQSL is derived from a previous for-
malization of network QoS requirements with specific emphasis of scalability and

cross-layer development. NSQL provides language elements for specifying QoS
domains, QoS subdomains, and QoS mappings. Further, QoS requirements can
be defined by specifying QoS profiles, expressed by minimum and optimum QoS
values and a scalability value that consists of utility function, cost function, and
two thresholds. The work presented in this paper solves a number of problems of
practical relevance. First, it is very important that network QoS requirements be
specified formally. While there are several languages reported in the literature
already, NQSL goes one step further by supporting network QoS specification on
all system layers, by including QoS scalability, and by supporting QoS mappings.

Our future work aims at developing a tool chain to support the efficient
handling of NQSL specifications. These tools should include a graphical editor,
an analyzer and an NQSL-to-SDL-generator. Second, an extensions of our tool
chain for QoS system development, and SDL system designs that satisfy formally
specified network QoS requirements are also planed.

References

1. Webel, C., Gotzhein, R.: Formalization of Network Quality-of-Service Require-
ments. In: Formal Techniques for Networked and Distributed Systems - FORTE
2007. Lecture Notes in Computer Science (LNCS) 4574, Springer (2007) 309-324

2. Schneider, D., Anastasopoulos, M., Bayer, J., Becker, M., Webel, C.: QoS Specifica-
tion in Ambient Intelligence Systems. In: Proceedings of ICPS06/SEPS Workshop
(SEPS’06), Lyon, France (2006)

A The Grammar

/+ The grammar */
<qos_desc> = <declaration_ part>
| <specification part>

| <mapping part>

| <declaration part> specification part>

| <declaration part> mapping part> <specification part>
| <declaration part> specification part> mapping part>;

/+* Deklaration Part x/

<declaration part> <qosdomain_list>

| <subdomain list>
| <subdomain list> <qosdomain list >;

<qosdomain_list> = <qosdomain_list> <qosdomain_item>
| <gosdomain item >;

<qosdomain item> = ’QoSDomain’ <ident> <domain body >;

<domain_body> = {’ <partdomain list> '}’
| ’{’> /+* EMPTY =/ ’}’;

<partdomain _list> = <partdomain_list> <partdomain_item>
| <partdomain item >;

<partdomain__item> = <pdomain_item>
| <rdomain item>
| <gdomain item >;

<pdomain_item> = ’Performance’ <partdomain body >;
<rdomain_item> = ’Reliability ’ <partdomain_body >;
<gdomain item> = ’Guarantee’ <partdomain_body >;

/* Subdomainsx/
<partdomain_body> = ’{’ <subdomain list> '}’
| 2{> /+«EMPTYx/ ’}7;

<subdomain list> = <subdomain list> <subdomain item>
| <subdomain item >;

<subdomain _item> = ’SubDomain’ <subdomain_body>
| ’SubDomain’ <ident> ’;’;

<subdomain body> = ’{’ subdomain desc:sdd '}’
| {> /= EMPTY %/ ’}’;

<subdomain desc> = <name item> <type desc>

| <type desc> <name item >;
<type_desc> = <type_item>
| <type item> <domainOfType item>
| <domainOfType item> <type item >;

<name_item> = ’name’ ’:’ <ident> ’;’;
<type_ item> = ’type’ ’:’ <datatype> ’;’;
<domainOfType item> = ’domain ’:’ <domainOfType> ’;’;

/* Types x/

<datatype> = <simpledatatype >
| <complexdatatype >;
<simpledatatype> = <ident>
| "Integer’
| ’"Real’;
<complexdatatype> = ’(’ <datatype list> ’)~’
| "Enum’;
<datatype list> = <datatype list> ’,’ <simpledatatype>

| <simpledatatype >;

/+ Type Domains x/

<domainOfType> = <setofvalues>
| <listofvalues >;

<setofvalues > = ’{’ <intervalvalue list> '}’
| {’ <enum list> ’}7;

<listofvalues > = <intervalvalue list>
| <enum list >;

s

<intervalvalue list> = <intervalvalue list> ’,’ <intervalvalue item>

| <intervalvalue item >;

<intervalvalue item> = <interval>
| <value >;
<enum _ list> = <enum list> ’,’ <ident>

| <ident >;

/+ Interval and Value x/

<interval> =

<closed _interval> =
<open_interval> =
left open_ interval =
right open interval —

<fromTo _item>

<value>

<simplevalue >

<number>

complexvalue

<closed _interval>
<open_interval>

<left open interval>
<right open interval >;

)

)

<fromTo_item> 7]

» <fromTo_item> ’[’;
’ <fromTo item> ’]’;
’ <fromTo item> [’

))

)

/o11,2]
/11,2
/11,2]
/11,2

T

’ .
3

= <value> ’,’ <value> /% Value to Value Wert x/
| 7,7 <value> /% —infinity to Value x/
| <value> 7’ /% Value to +infinity =/
\

v /#* —inf. to +inf. x/

= <simplevalue>
| <complexvalue >;

= '+’ <number>
| =’ <number>
\

<number >;

— <Integer Literal>
| <Real Literal >;

= 7(’ <value list> ’)’;

<value_list> = <value_ list> ’,6’'<value>
| <value >;

/+*Mappingss*/
<mapping part> = ’domainMapping’ ’from’ <ident> ’to’ <ident> <mapping_ body>;
<mapping body> = ’{’ <mapping list> ’}’;
<mapping_list> = <mapping_list> <mapping_item>

| <mapping item> ;
<mapping item> = ’Performance’ ’:’ <mappingfunc list>

| "Reliability > ’:’ <mappingfunc list>

| ’Guarantee’ 717 <mappingfunc_list >;
<mappingfunc_list> = <mappingfunc_list> <mappingfunc_part>

| <mappingfunc part >;

<mappingfunc_part> = <mappingfunc> ’;’;
<mappingfunc> <ident> ’=’ <expression >

| <ident>
| /#*no mapping=/;

/* Specification */

<specification

_part> = Specification <ident> ’uses’

<ident > <specification7body >,

<specification body> = ’"{’ <qosreq_ list> ’}’;

<qosreq_ list>

<qosreq_item>

= <qosreq_list> <qosreq_item>
| <qosreq item >;

= ’qosReq’ <ident> <qosreq_body >;

<qosreq__body> = "{’ <qosreq_part> ’}’;

<qosreq_ part> = <minopt_list> <scalability spec>
| <minopt list >;

<minopt list> = ’‘minimum’ <subspec part> ’optimum’ <subspec part>
| ’optimum’ <subspec part> ‘minimum’ <subspec part >;

<subspec _part> = {’ <subspec list> '}’

<subspec list> = <subspec list> <subspec item>
| <subspec item> ;
<subspec_item> = ’Performance’ ’:’ <assignment_list>
| "Reliability’ ’:’ <assignment list>
’Guarantee’ 7:7 <assignment list >;
g _

<assignment list> = <assignment _list> <assignment part>
| <assignment part >;

<assignment part> = <assignment> ;7
<assignment > = <ident> ’'=’ <value>

| <ident> ’'=’ <ident >;
<scalability spec> = ’'Scalability ’ <scalability body >;
<scalability body> = {’ <scalability list> "}7;
<scalability list > = <scalability list > <scalability part>

| <scalability part >;

<scalability part> <scalability item> ’;’;

PR

<scalability item > = ’util’ '=’ <expression >
= ’cost’ ’=’ <expression >
| up’ =’ <simplevalue>
| ’down’ =’ <simplevalue >;

<expression > = <expression> '+’ <expression>
| <expression> ’'—’ <expression>
| <expression> 'k’ <expression>
| <expression> ’/’ <expression>
| <expression> ’'\%’ <expression>
| =7 <expression>

\%prec UMINUS

| 7 (’ <expression>)’

| <number>

| <ident >;

/* Literals and Identifierx/
<Integer Literal> = [0—9]+;

<Real _Literal > 0’.70

[0—9]x". [0—9]+
[0=9](".7[0=9]+)7[eB][+ —]7[0—9]+;

<ident >

l[a—zA—Z. | [0—9a—2zA—Z. —]x;

B Example: VideoTelephony

subdomain {
name: ResponseTime;
type: Int;
domain: [0 ,...];
//unit: sec.;

subdomain {
name: AudioSamplingRate;
type: Int;
domain: {11025, 22050, 44100,48000};
//unit: Hz;

}

subdomain {
name: AudioResolution;
type: Int;
domain: {8, 16, 24,32};
//unit: Bit;

subdomain {
name: VideoResolution;
type: (Int, Int);
domain: {(320, 240), (480,360),(640, 480)};
//uanit: (px, px);

subdomain {
name: VideoFPS;

type: Int;
domain: [1,...];
//unit:

subdomain {
name: PictureQuality;
type: Int;
domain: [0,100];
//unit: %;

}

subdomain {
name: DoC;
type: Enum;
domain: {bestEffort, enhancedBestEffort, statistical , deterministic};

//unit:

subdomain {
name: Dataloss;
type: Int;
domain: [0,100];
//unit: % max.;

}

subdomain {
name: Priority;

type: Int;
domain: [0 ,];
//unit:

subdomain {

name: Synchronisation;
type: Enum;
domain: {lipSynchronous};
//unit:

}

subdomain {
name: Performance;
type: Int;
domain: [0 ,...];
//unit: max. pro min;

subdomain {
name: Throughput;
type: Int;
domain: [0 ,];
//unit: kb/s;

}

subdomain {
name: Delay;
type: float;
domain: [0 ,];
//unit: max. sec;

subdomain {
name: Jitter;
type: float;
domain: [0 ,];
//unit: max. sec;

}

subdomain {
name: PacketLoss;
type: Int;
domain: [0,100];
//unit: %;

subdomain {
name: Corruption;

type: Int;
domain: [0,100];
//unit: %;

}

subdomain {
name: OrderPreserving;
type: bool;
domain: {yes,no};
//unit:

subdomain {
name: Stat;

type: Int;
domain: [0,100];
//unit: %;

}

QoSDomain SessionCall {
performance {

subdomain ResponseTime;

subdomain
}
reliability {
subdomain
}
guarantee {
subdomain
subdomain

subdomain

}
QoSDomain Audio {

performance {
subdomain
subdomain

}

reliability {
subdomain

}

guarantee {
subdomain
subdomain

subdomain

}

QoSDomain Video {
performance {
subdomain
subdomain
subdomain
subdomain
subdomain

}

reliability {

Performance;

DatalLoss;

DoC;
Priority ;

Stat ;

AudioSamplingRate;

AudioResolution;

DatalLoss;

DoC;
Priority;

Stat ;

AudioSamplingRate;
AudioResolution ;
VideoResolution ;
VideoFPS;

PictureQuality ;

subdomain
subdomain
}
guarantee {
subdomain
subdomain

subdomain

}
QoSDomain System
performance {
subdomain
subdomain
subdomain
}
reliability {
subdomain
subdomain
subdomain
}
guarantee {
subdomain
subdomain

subdomain

}

DatalLoss;

Synchronisation ;

DoC;
Priority;

Stat ;

{

Throughput;
Delay ;

Jitter;

PacketLoss;
Corruption ;

OrderPreserving ;

DoC;;
Priority;

Stat ;

domainmapping from Video to System {

performance:
Throughput = (VideoResolution [0]* VideoResolution[1]*0,62x VideoFPS
#(PictureQuality /2+4+0,5)+ AudioSamplingRate
x*AudioResolution /8)*1,5/1024;
Delay = 2;
Jitter = 0,5;
reliability :
PacketLoss = Dataloss;
Corruption = DataLoss /3;
OrderPreserving = yes;

guarantee:
DoC = Guarantee;
Priority = Priority;

Stat = Stat;

}

specification VideoTransmission uses Video {

qgosreq VideoTransmission {
minimum {
performance:
VideoResolution = 320,240;
PictureQuality = 50;
VideoFPS = 5;
AudioResolution = 8§;
AudioSamplingRate = 11025;
reliability:
Synchronisation = lipSynchronous;
DatalLoss = 10;

guarantee:
DoC = enhancedBestEffort;
Stat = 90;
Priority = low;

optimum {
performance:
VideoResolution = 640,480;
PictureQuality = 90;
VideoFPS = 25;
AudioResolution = 16;
AudioSamplingRate = 44100;

reliability :
DoC = enhancedBestEffort;

Stat = 90;
Priority = low;
guarantee:
Synchronisation = lipSaynchronous;

DatalLoss = 2;

scalability
util: (
cost: (
up: 0,2;
down: 0

{
o)
e
2.

34

}

specification AudioTransmission uses Audio {

qgosreq AudioTransmission {
minimum {
performance:
AudioSamplingRate = 11025;
AudioResolution = 8§;

reliability:
DatalLoss = 5;

guarantee:
DoC = enhancedBestEffort ;

Stat = 90;
Priority = medium;

optimum {
performance:
AudioSamplingRate = 44100;

AudioResolution = 16;

reliability :
DoC = enhancedBestEffort;

Stat = 90;
Priority = medium;

guarantee:
DatalLoss = 5;

}
scalability {

util: (...);
cost: (...);
up: 0,2;
down: 0,2;

}

specification SessionCall uses SessionCall {
qosreq SessionCall {
minimum {
performance:
ResponseTime = 5;

Performance = 3;

reliability :
DataLoss = 0;

guarantee:

Priority = medium;
DoC = enhancedBestEffort;
Stat = 90;

optimum {
performance:
ResponseTime = 5;
Performance = 3;

reliability :

Priority = medium;
DoC = enhancedBestEffort;
Stat = 90;

guarantee:
DataLoss = 0;

util:
cost:
up: 1;
down: 1;

scalability {
(ResponseTime >570:1—ResponseTime /6)*(DataLoss >070:1);

}

specification EmergencyCall uses SessionCall {

gosreq EmergencyCall {
minimum {
performance:
ResponseTime = 1;
Performance = 3;

reliability :
DataLoss = 0;

guarantee:
DoC = enhancedBestEffort;
Stat = 90;

Priority = high;

optimum {
performance:
ResponseTime = 1;
Performance = 3;

reliability :
DoC = enhancedBestEffort;
Stat = 90;
Priority = high;

guarantee:
DataLoss = 0;

scalability {

util: (ResponseTime > 370:1—ResponseTime /3 ,3)*(DataLoss >070:1);
cost:

up: 1;

down: 1;

